
Correctly Implementing
Synchronous Message Passing in the Pi-Calculus

by Concurrent Haskell’s MVars

Manfred Schmidt-Schauß

Goethe-University Frankfurt

David Sabel

LMU Munich

EXPRESS/SOS 2020
August 31, 2020

General Motivation

We are interested in the correctness of translations between programming languages

A B
τ

Questions:

can language B express language A?

does τ correctly implement the primitives of A using the primitives of B?

We focus correctness w.r.t. contextual equivalence.

equates programs if they behave the same (w.r.t. termination) in all contexts

it is a generic notion, applicable for many programming languages

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 2/19 Introduction ΠStop CH Translations Conclusion

Goals of the Current Work

π-calculus [Milner, Parrow, & Walker,1992]

a standard model for (mobile) processes with message passing

we use the synchronous π-calculus with replication and a constant stop (called ΠStop)

Concurrent Haskell [Peyton-Jones, Gordon, & Finne, 1996]

extends Haskell by concurrent threads and shared-memory (so-called MVars)

we use the calculus CH (a variant of CHF, [S. & Schmidt-Schauß, 2011])

Questions:

Can we encode/translate ΠStop into CH?

Which (correctness) properties hold for the translation?

ΠStop CH
τ

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 3/19 Introduction ΠStop CH Translations Conclusion

The Source Language ΠStop: The π-calculus with Stop

we consider the synchronous π-calculus, with replication, without sums

extended with a constant Stop to signal success [S. & Schmidt-Schauß 2015]

Syntax of Processes

P ,Q ∈ Procπ ::= P ||Q | x(y).P︸ ︷︷ ︸
input

| xy.P︸ ︷︷ ︸
output

| νx.P | !P | 0 | Stop︸ ︷︷ ︸
success

Reduction contexts: D ∈ PCtxtπ ::= [·] | D ||P | P ||D | νx.D

Reduction rule for interaction Standard Reduction
sr−→:

x(y).P ||xz.Q
ia−→ P [z/y] ||Q P

sr−→ Q if P ≡ D[P ′], P ′
ia−→ Q′,D[Q′] ≡ Q

Process P is successful if P ≡ D[Stop]

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 4/19 Introduction ΠStop CH Translations Conclusion

The Source Language ΠStop: The π-calculus with Stop

we consider the synchronous π-calculus, with replication, without sums

extended with a constant Stop to signal success [S. & Schmidt-Schauß 2015]

Syntax of Processes

P ,Q ∈ Procπ ::= P ||Q | x(y).P︸ ︷︷ ︸
input

| xy.P︸ ︷︷ ︸
output

| νx.P | !P | 0 | Stop︸ ︷︷ ︸
success

Reduction contexts: D ∈ PCtxtπ ::= [·] | D ||P | P ||D | νx.D

Reduction rule for interaction Standard Reduction
sr−→:

x(y).P ||xz.Q
ia−→ P [z/y] ||Q P

sr−→ Q if P ≡ D[P ′], P ′
ia−→ Q′,D[Q′] ≡ Q

Process P is successful if P ≡ D[Stop]

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 4/19 Introduction ΠStop CH Translations Conclusion

The Target Language CH: Functional Language + Threads & MVars

Syntax of Processes:

Pi ∈ ProcCH ::= P1 ||||P2 | νx.P | ⇐ e︸︷︷︸
thread

| x = e | xm e | xm−︸ ︷︷ ︸
MVars

Main-thread: a unique distinguished thread
main⇐== e

Syntax of Expressions:

ei ::=

extended lambda-calculus︷ ︸︸ ︷
x | λx.e | (e1 e2) | c−→e1 | case e of alts | seq e1 e2 | letrecx1=e1, . . . , xn=en in e

| return e | e1 >>= e2 | forkIO e︸ ︷︷ ︸
IO-monad & concurrency

| newMVar e | takeMVar e | putMVar e1 e2︸ ︷︷ ︸
monadic MVar-operations

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 5/19 Introduction ΠStop CH Translations Conclusion

CH: Operational Semantics (Excerpt)

Monadic Computations
(lunit) ⇐M[return e1 >>= e2] → ⇐M[e2 e1]

(fork) ⇐M[forkIO e] → ⇐M[return ()] || ⇐ e

(tmvar) ⇐M[takeMVar x] ||xm e → ⇐M[return e] ||xm−
(pmvar) ⇐M[putMVar x e] ||xm− → ⇐M[return ()] ||xm e

. . .
Functional Evaluation
(beta) ⇐M[F[((λx.e1) e2)]]→ ⇐M[F[e1[e2/x]]]
. . .

Standard Reduction
sr−→:

P
sr−→ Q if P ≡ D[P ′], P ′ → Q′,D[Q′] ≡ Q

Process P is successful if

P ≡ νx1 . . . xn.(
main⇐== return e ||P ′)

Contexts:

M ::= [·] | M >>= e
E ::= [·] | (E e) | (caseE of alts) | (seqE e)
F ::= E | (takeMVarE) | (putMVarE e)
D ::= [·] | D ||P | P ||D | νx.D

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 6/19 Introduction ΠStop CH Translations Conclusion

Semantics of Processes in Source and Target Language

Observations:

P may-converges (P↓) iff P
sr,∗−−→ P ′ and P ′ is successful.

P should-converges (P⇓) iff ∀P ′ : P sr,∗−−→ P ′ =⇒ P ′↓

Contextual equivalence ∼c

P1 ∼c P2 iff ∀C : C[P1]↓ ⇐⇒ C[P2]↓ and C[P1]⇓ ⇐⇒ C[P2]⇓

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 7/19 Introduction ΠStop CH Translations Conclusion

Task: Find a Translation ...

ΠStop CH
τ

that is correct w.r.t. ∼c
we present the main ideas of the translation step by step:

translation of the Stop-constant

translation of 0, parallel composition, replication

translation of channels (and interaction): with different variations

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 8/19 Introduction ΠStop CH Translations Conclusion

Translation

Translation of Stop:

τ0(P) =
main⇐== do {stop ← newMVar ();

forkIO τ(P);
putMVar stop ()}

τ(Stop) = takeMVar stop

=Cτout [τ(P)]

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19 Introduction ΠStop CH Translations Conclusion

Translation

Translation of Stop:

τ0(P) =
main⇐== do {stop ← newMVar ();

forkIO τ(P);
putMVar stop ()}

τ(Stop) = takeMVar stop

=Cτout [τ(P)]

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19 Introduction ΠStop CH Translations Conclusion

Translation

Translation of Stop:

τ0(P) =
main⇐== do {stop ← newMVar ();

forkIO τ(P);
putMVar stop ()}

τ(Stop) = takeMVar stop

=Cτout [τ(P)]

stop

()main thread

successful

main thread

put
 blocked other threads

Stop

take

stop
put

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19 Introduction ΠStop CH Translations Conclusion

Translation

Translation of Stop:

τ0(P) =
main⇐== do {stop ← newMVar ();

forkIO τ(P);
putMVar stop ()}

τ(Stop) = takeMVar stop

=Cτout [τ(P)]

stop

()main thread

successful

main thread

put
 blocked

other threads

Stop

take

stop
put

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19 Introduction ΠStop CH Translations Conclusion

Translation

Translation of Stop:

τ0(P) =
main⇐== do {stop ← newMVar ();

forkIO τ(P);
putMVar stop ()}

τ(Stop) = takeMVar stop

=Cτout [τ(P)]

stop

()main thread

successful

main thread
put

 blocked other threads

Stop

take

stop
put

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19 Introduction ΠStop CH Translations Conclusion

Translation

Translation of Stop:

τ0(P) =
main⇐== do {stop ← newMVar ();

forkIO τ(P);
putMVar stop ()}

τ(Stop) = takeMVar stop

=Cτout [τ(P)]

stop

()main thread

successful

main thread
put

 blocked other threads

Stop

take

stop
put

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19 Introduction ΠStop CH Translations Conclusion

Translation

Translation of Stop:

τ0(P) =
main⇐== do {stop ← newMVar ();

forkIO τ(P);
putMVar stop ()}

τ(Stop) = takeMVar stop

=Cτout [τ(P)]

stop

()main thread

successful

main thread
put

 blocked other threads

Stop

take

stop
put

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19 Introduction ΠStop CH Translations Conclusion

Translation

Translation of Stop:

τ0(P) =
main⇐== do {stop ← newMVar ();

forkIO τ(P);
putMVar stop ()}

τ(Stop) = takeMVar stop

=Cτout [τ(P)]

stop

()main thread

successful

main thread

put
 blocked

other threads

Stop

take

stop
put

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19 Introduction ΠStop CH Translations Conclusion

Translation

Translation of Stop:

τ0(P) =
main⇐== do {stop ← newMVar ();

forkIO τ(P);
putMVar stop ()}

τ(Stop) = takeMVar stop

=Cτout [τ(P)]

stop

()main thread successfulmain thread

put
 blocked

other threads

Stop

take

stop
put

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19 Introduction ΠStop CH Translations Conclusion

Translation

Translation of Stop:

τ0(P) =
main⇐== do {stop ← newMVar ();

forkIO τ(P);
putMVar stop ()}

τ(Stop) = takeMVar stop

=Cτout [τ(P)]

Translation of 0, Parallel Composition, and Replication:

τ(0) = return ()

τ(P ||Q) = do {forkIO τ(Q); τ(P)}

τ(!P) = letrec f = do {forkIO τ(P); f} in f

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19 Introduction ΠStop CH Translations Conclusion

Translation of Channels and Message Passing

Two approaches to encode synchronous communication by several accesses to MVars

Using a private MVar per communication

(similar to [Boudol 1992, Honda & Tokora, 1991] where private names guarantee correct
communication while encoding the synchronous in the asynchronous π-calculus)

Using a fixed number of global MVars per channel

avoids to dynamically generate “garbage”

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 10/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

takeput

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

takeput

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

takeput

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

takeput

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

takeput

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

takeput

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

takeput

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

takeput

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

takeput

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

take

put

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

take

put

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Translation with Private MVar

π-calculus-channels are translated into

data Channel = Chan (MVar (Channel, MVar ()))

τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}

τ(xz.Q) = do {checkx← newMVar ();
putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

x

channel creation
νx

sender

xz.Q

receiver

x(y).P

take
 blocked

()

checkx

(z,)·
put

x

(z,)· take

put
 blocked

x

takeput

checkx

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction ΠStop CH Translations Conclusion

Full Translation

τ0(P) =Cτout [τ(p)]
τ(Stop) = takeMVar stop
τ(0) = return ()
τ(P ||Q) = do {forkIO τ(Q); τ(P)}
τ(!P) = letrec f = do {forkIO τ(P); f} in f
τ(νx.P) = do {chanx ← newEmptyMVar ; letrec x = Chan chanx in τ(P)}
τ(xz.Q) = do {checkx← newMVar ();

putMVar (unchan x) (z, checkx);
{putMVar checkx (); τ(Q)}

τ(x(y).P) = do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(P)}

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 12/19 Introduction ΠStop CH Translations Conclusion

Correctness of Translation τ

Theorem (Convergence Equivalence)

For closed P ∈ ΠStop: P↓ ⇐⇒ Cτout [τ(P)]↓ and P⇓ ⇐⇒ Cτout [τ(P)]⇓

Proof consists of four parts:

(“↓ ⇒ ↓”) P
sr,∗−−→ P ′, P ′ successful =⇒ ∃Q : Cτout [τ(P)]

sr,∗−−→ Q,Q successful.

(“↓ ⇐ ↓”) Cτout [τ(P)]
sr,∗−−→ Q,Q successful =⇒ ∃P ′ : P sr,∗−−→ P ′, P ′ successful

(“⇓ ⇐ ⇓”) P
sr,∗−−→ P ′, P ′⇑ =⇒ ∃Q : Cτout [τ(P)]

sr,∗−−→ Q,Q⇑.

(“⇓ ⇒ ⇓”) Cτout [τ(P)]
sr,∗−−→ Q,Q⇑ =⇒ ∃P ′ : P sr,∗−−→ P ′, P ′⇑

All parts require to inductively construct reduction sequences from given ones.

For parts (“↓ ⇐ ↓”) and (“⇓ ⇒ ⇓”), the given sequences Cτout [τ(P)]
sr,∗−−→ Q have to be

reordered, cut and/or extended to “back-translate” them.

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 13/19 Introduction ΠStop CH Translations Conclusion

Correctness of Translation τ (Cont’d)

Theorem (Adequacy)

Translation τ is adequate, i.e. for all P, P ′ ∈ ΠStop: τ(P) ∼c,τ0 τ(P ′) =⇒ P ∼c P ′

Theorem

The translation τ is not fully abstract (P ∼c P ′ ⇐⇒ τ(P) ∼c,τ0 τ(P ′)).
On closed processes P, P ’: P ∼c P ′ ⇐⇒ τ(P) ∼c,τ0 τ(P ′)

where e1 ∼c,τ0 e2 iff for all C : FV (C[e1]) ∪ FV (C[e2]) ⊆ {stop} :
Cτout [C[e1]]↓ ⇐⇒ Cτout [C[e2]]↓ and Cτout [C[e1]]⇓ ⇐⇒ Cτout [C[e2]]⇓

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 14/19 Introduction ΠStop CH Translations Conclusion

Translations with Global MVars

Ideas:

Translation of stop, 0, || , ! as before

π-calculus-channels are translated into data of type

data Channel = Chan (MVar Channel)︸ ︷︷ ︸
content

(MVar ())...(MVar ())︸ ︷︷ ︸
check-MVars

i.e. channel x becomes a binding x = Chan content check1 . . . checkn

MVars content, check1,. . . , checkn are created once and are (globally) visible via x

Programs for sender xz and receiver x(y) are restricted:

They exchange the message via the content-MVar

They perform takeMVar & putMVar on the check-MVars for synchronisation

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 15/19 Introduction ΠStop CH Translations Conclusion

Translations with Global MVars (Cont’d)

Reminder: a channel x becomes a binding x = Chan content check1 . . . checkn

Questions:

Are there correct translations under these restrictions?

How many check-MVars are required?

What is the smallest correct translation?

Approach:

enumerate all translations and automatically search for counter-examples

check correctness of the remaining (potentially correct) translations by hand

Conjecture (Proved in the meantime, not yet published)

With the described restrictions two check-MVars are required.

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 16/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content xcontent x

z

check1 xcheck1 x

()

check2 xcheck2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content x

content x

z

check1 x

check1 x

()

check2 x

check2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content x

content x

z

check1 x

check1 x

()

check2 x

check2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content x

content x

z

check1 x

check1 x

()

check2 x

check2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content x

content x

z

check1 x

check1 x

()

check2 x

check2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content x

content x

z

check1 x

check1 x

()

check2 x

check2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content xcontent x

z

check1 x

check1 x

()

check2 x

check2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content xcontent x

z

check1 x

check1 x

()

check2 x

check2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content x

content x

z

check1 x

check1 x

()

check2 x

check2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content x

content x

z

check1 x

check1 x

()

check2 x

check2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content x

content x

z

check1 x

check1 x

()

check2 x

check2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars
T1(xz.Q) = do {putMVar (check1 x) (),

putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

content x

content x

z

check1 x

check1 x

()

check2 x

check2 x

()

sender

xz.Q

receiver

x(y).P

take
 blocked

take

put

put

put

take
 blocked

take

take

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Correct Translation with Two Check-MVars

T1(xz.Q) = do {putMVar (check1 x) (),
putMVar (content x) z;
takeMVar (check2 x);
takeMVar (check1 x);T1(Q)}

T1(x(y).P) = do {y ← takeMVar (content x);
putMVar (check2 x);T1(P)}

Theorem

T1 is convergence-equivalent, adequate, and on closed processes also fully-abstract.

Main arguments:

MVar (check1 x) is used as a mutex for the receivers on x

execution of the sender/receiver protocol is non-overlapping

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19 Introduction ΠStop CH Translations Conclusion

Translations with Global MVars and Interprocess Restriction

Interprocess restriction:
One put/take-pair for each check-MVar and it is distributed between sender/receiver.

Theorem

Under the interprocess restriction, three check-MVars are necessary and sufficient.

Correct translation:

T2(xz.Q) = do {putMVar (content x) z;
putMVar (check1 x) ();
takeMVar (check2 x);
putMVar (check3 x) ();T2(Q)}

T2(x(y).P) = do {takeMVar (check1 x);
putMVar (check2 x);
takeMVar (check3 x);
y ← takeMVar (content x);T2(P)}

Results of the automated search for counter-examples:
for 1 check-MVar 8 of 8 translations are refuted
for 2 check-MVars 72 of 72 translations are refuted
for 3 check-MVars 762 of 768 translations are refuted

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 18/19 Introduction ΠStop CH Translations Conclusion

Translations with Global MVars and Interprocess Restriction

Interprocess restriction:
One put/take-pair for each check-MVar and it is distributed between sender/receiver.

Theorem

Under the interprocess restriction, three check-MVars are necessary and sufficient.

Correct translation:

T2(xz.Q) = do {putMVar (content x) z;
putMVar (check1 x) ();
takeMVar (check2 x);
putMVar (check3 x) ();T2(Q)}

T2(x(y).P) = do {takeMVar (check1 x);
putMVar (check2 x);
takeMVar (check3 x);
y ← takeMVar (content x);T2(P)}

Results of the automated search for counter-examples:
for 1 check-MVar 8 of 8 translations are refuted
for 2 check-MVars 72 of 72 translations are refuted
for 3 check-MVars 762 of 768 translations are refuted

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 18/19 Introduction ΠStop CH Translations Conclusion

Conclusion & Future Work

Conclusion

Correct translations from ΠStop into Concurrent Haskell

Translation with private MVars

Smallest translations with global MVars

Translations are convergence equivalent and adequate
(fully abstract on closed processes)

Refuted incorrect translations by automated search for counter-examples

Future Work

Variations and extensions of ΠStop (recursion, sums, name matching, . . .)

Other target languages?

Publish proof of conjecture

D. Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 19/19 Introduction ΠStop CH Translations Conclusion

	Introduction
	Stop
	CH
	Translations
	Conclusion

