LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Correctly Implementing
Synchronous Message Passing in the Pi-Calculus
by Concurrent Haskell’'s MVars

Manfred Schmidt-SchauB David Sabel - R AR
Goethe-University Frankfurt LMU Munich

\«

Y, 2
EXPRESS/SOS 2020 I §'§
August 31, 2020)/[M‘@[

General Motivation

@ We are interested in the correctness of translations between programming languages

@ Questions:
@ can language B express language A?

@ does 7 correctly implement the primitives of A using the primitives of B?

@ We focus correctness w.r.t. contextual equivalence.

@ equates programs if they behave the same (w.r.t. termination) in all contexts

@ it is a generic notion, applicable for many programming languages

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 2/19 Introduction Tlstop CH Translations Conclusion

Goals of the Current Work

m-calculus [Milner, Parrow, & Walker,1992]
@ a standard model for (mobile) processes with message passing
@ we use the synchronous 7-calculus with replication and a constant stop (called Ilg¢op)

Concurrent Haskell [Peyton-Jones, Gordon, & Finne, 1996]
@ extends Haskell by concurrent threads and shared-memory (so-called MVars)
@ we use the calculus CH (a variant of CHF, [S. & Schmidt-SchauB, 2011])

Questions:
o Can we encode/translate Ilg¢qp into CH?
@ Which (correctness) properties hold for the translation?

T

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 3/19 Introduction Tlstop CH Translations Conclusion

The Source Language Ilg¢op: The m-calculus with Stop

@ we consider the synchronous m-calculus, with replication, without sums
@ extended with a constant Stop to signal success [S. & Schmidt-SchauB 2015]
Syntax of Processes
P,Q € Procy, == P | Q| z(y).P | Ty.P |vz.P|!P|0]| Stop
—— ~—~—— ~—~—

input output success

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 4/19

The Source Language Ilg¢op: The m-calculus with Stop

@ we consider the synchronous m-calculus, with replication, without sums
@ extended with a constant Stop to signal success [S. & Schmidt-SchauB 2015]

Syntax of Processes
P,Q € Procy :==P1Q | z(y).P | Ty.P |vx.P|IP|0]| Stop
—— —— ~—~—~

input output success

Reduction contexts: D € PCtxt, == [-] |D| P | PID | va.D

Reduction rule for interaction Standard Reduction -
x(y).P172.Q % Plz/y] 1 Q P Qif P=D[P],P % Q. DQI=Q

Process P is successful if P = D[Stop]
D

The Target Language CH: Functional Language + Threads & MVars

Syntax of Processes:

Py e Proccy 2= P | Py |vaz.P| <e|xz=c| zme|xzm—
~— —_———
thread MVars

main

Main-thread: a unique distinguished thread <—=e

Syntax of Expressions:
extended lambda-calculus

e; i=1x | Az.e | (e1e2) | cef | caseeofalts | seqe; ey | letrecxi=ey, ..., xp=e, ine

| returne | e »= ey | forkIOe | newMVare | takeMVar e | putMVar e; eg

[O-monad & concurrency monadic MVar-operations

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 5/19

CH: Operational Semantics (Excerpt)

Monadic Computations

(lunit) <M]|return e; »= ey — <=Miez e]

(fork) M[forkIO €] — <Mireturn ()] | <e
(tmvar) «<M]|takeMVar z] | zme — < M]returne] | zm—
(pmvar) <M][putMVar = ¢| | zm— — <M]return ()] | zme

Fu‘r.l;:tional Evaluation
(beta) <=MIF[((Az.e1) e2)]] = <= M][Fei[ea/x]]]

Standard Reduction = Cl\jlnteXt[S'] | M
sr - = D= e
P—=Qif P=D[P], P - Q' DQ]=Q E :=[]]| (Ee) | (case Eof alts) | (seqEe)
. . F ::=FE | (takeMVarE) | (putMVar Ee)
Process P is successful if D =[] DIP|PID|veD

P=vry... 2y E=returne| P)

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 6/19 Introduction Ilgzop CH Translations Conclusion

Semantics of Processes in Source and Target Language

Observations:
o P may-converges (P|) iff P 2% P’ and P’ is successful.

ST,*x

e P should-converges (P|) iff VP': P — P/ — P'|

Contextual equivalence ~,

Py ~e Py iff YO : C[Py]L <= C[P)]| and C[P]| < C[P)

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020

Task: Find a Translation ...

@ that is correct w.r.t. ~,

@ we present the main ideas of the translation step by step:
@ translation of the Stop-constant
o translation of 0, parallel composition, replication

e translation of channels (and interaction): with different variations

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 8/19

Translation

Translation of Stop:

main

70(P)= <=do {stop < newMVar (); T(Stop) = takeMVar stop
forkI0 7(P);
putMVar stop ()}

= Coulr(P)]

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19

Translation

Translation of Stop:

main

70(P)= <=do {stop < newMVar (); T(Stop) = takeMVar stop
forkI0 7(P);
putMvar stop ()}

= Cou[(P)]

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19

Translation

Translation of Stop:
70(P)= 231 4o {stop < newMVar (); T(Stop) = takeMVar stop
forkIO 7(P);
putMvar stop ()}

= 7 [r(P)

out

stop

main thread .

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19

Translation

Translation of Stop:
70(P)= 231 4o {stop < newMVar (); 7(Stop) =takeMVar stop
forkIO 7(P);
putMvar stop ()}

= Coulr(P)]

out

stop

main thread . other threads

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19

Translation

Translation of Stop:

70(P)= 231 4o {stop < newMVar (); 7(Stop) =takeMVar stop
forkIO 7(P);
putMvVar stop ()}

=CulT(P)]
stop
put
main thread 7 blocked/ other threads

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19

Translation

Translation of Stop:

70(P)= 231 4o {stop < newMVar (); 7(Stop) =takeMVar stop
forkIO 7(P);
putMvar stop ()}

=CulT(P)]
stop
put
main thread 7 blocked/ other threads

Stop

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19

Translation

Translation of Stop:

70(P)= 231 4o {stop < newMVar (); T(Stop) = takeMVar stop
forkIO 7(P);
putMvar stop ()}

=CulT(P)]
stop
put take
main thread 7 blocked/ other threads

Stop

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19

Translation

Translation of Stop:

main

70(P) = <=do {stop < newMVar (); 7(Stop) =takeMVar stop
forkIO 7(P);
putMVar stop ()}
= Cou[(P)]
stop
put
main thread —_—D> other threads

Stop

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19

Translation

Translation of Stop:

main

70(P) = <=do {stop < newMVar (); 7(Stop) =takeMVar stop
forkIO 7(P);
putMvar stop ()}
= Cgulr(P)]
stop
main thread successful . other threads

Stop

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19

Translation

Translation of Stop:

main

70(P)= <=do {stop < newMVar (); 7(Stop) = takeMVar stop
forkIO 7(P);
putMvar stop ()}

=Coulr(P)]
Translation of 0, Parallel Composition, and Replication:
7(0) =return ()
T7(P | Q)=do {forkIO 7(Q); 7(P)}

7(!P) =1letrec f =do {forkIO 7(P); f} in f

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 9/19

Translation of Channels and Message Passing

Two approaches to encode synchronous communication by several accesses to MVars

@ Using a private MVar per communication

(similar to [Boudol 1992, Honda & Tokora, 1991] where private names guarantee correct
communication while encoding the synchronous in the asynchronous 7-calculus)

@ Using a fixed number of global MVars per channel

avoids to dynamically generate “garbage”

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 10/19 Introduction Tlstop CH Translations Conclusion

Translation with Private MVar

m-calculus-channels are translated into

data Channel = Chan (MVar (Channel,MVar ()))

7(vx.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan z);
putMVar (unchan) (z, checkz); takeMVar checkz;T(P)}
putMvar checkz (); 7(Q)}

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19

Translation with Private MVar

m-calculus-channels are translated into
data Channel = Chan (MVar (Channel,MVar ()))
7(ve.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan z);
putMVar (unchan) (z, checkz); takeMVar checkz;T(P)}
putMvar checkz (); 7(Q)}

channel creation
VT

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction Tlstop CH Translations Conclusion

Translation with Private MVar

m-calculus-channels are translated into

data Channel = Chan (MVar (Channel,MVar ()))

7(vz.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan z);
putMvar (unchan x) (z, checkx); takeMVar checkz;7(P)}
putMvar checkz (); 7(Q)}
€T
sender receiver
T2.Q) z(y).P

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction Ilgtop CH Translations Conclusion

Translation with Private MVar

m-calculus-channels are translated into

data Channel = Chan (MVar (Channel,MVar ()))

7(vz.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan x);
putMVar (unchan) (z, checkz); takeMVar checkz;T(P)}
putMvar checkz (); 7(Q)}
€T
take i
sender > sblockeds eceiver
T2.Q) z(y).P

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19

Translation with Private MVar

m-calculus-channels are translated into

data Channel = Chan (MVar (Channel,MVar ()))

7(vz.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan z);
putMVar (unchan) (z, checkz); takeMVar checkz;T(P)}
putMvar checkz (); 7(Q)}
€T
take i
sender > sblockeds eceiver
T2.Q) z(y).P
checkx

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19

Translation with Private MVar

m-calculus-channels are translated into

data Channel = Chan (MVar (Channel,MVar ()))

7(vz.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan z);
putMvar (unchan x) (z,checkx); takeMVar checkz;T(P)}
putMvar checkz (); 7(Q)}
€T
put take i
sender (2, P > sblockeds eceiver
T2.Q) z(y).P
checkx

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19

Translation with Private MVar

m-calculus-channels are translated into

data Channel = Chan (MVar (Channel,MVar ()))

7(vx.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan z);
putMvar (unchan x) (z,checkx); takeMVar checkz;7(P)}
putMvar checkz (); 7(Q)}
€T
sender take receiver
T2.Q) z(y).P
checkx

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19

Translation with Private MVar

m-calculus-channels are translated into

data Channel = Chan (MVar (Channel,MVar ()))

7(vx.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan z);
putMVar (unchan) (z, checkz); takeMVar checkz;T(P)}
putMvar checkz (); 7(Q)}
€T
sender take receiver
T2.Q) z(y).P
put
4 blocked 4
checkx

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19

Translation with Private MVar

m-calculus-channels are translated into

data Channel = Chan (MVar (Channel,MVar ()))

7(vz.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan x);
putMVar (unchan) (z, checkz); takeMVar checkz;T(P)}
putMvar checkz (); 7(Q)}
€T
sender receiver
T2.Q) z(y).P
put
4 blocked 4
checkx

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19

Translation with Private MVar

m-calculus-channels are translated into

data Channel = Chan (MVar (Channel,MVar ()))

7(vz.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan z);
putMVar (unchan) (z, checkz); takeMVar checkz;T(P)}
putMvar checkz (); 7(Q)}
€T
sender receiver
T2.Q) z(y).P
put take
4 blocked 4
checkx

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19

Translation with Private MVar

m-calculus-channels are translated into

data Channel = Chan (MVar (Channel,MVar ()))

7(vz.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan z);
putMVar (unchan) (z, checkz); takeMVar checkz;T(P)}
putMvar checkz (); 7(Q)}
€T
sender receiver
T2.Q) z(y).P
put
_>
checkx

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19 Introduction Ilgtop CH Translations Conclusion

Translation with Private MVar

m-calculus-channels are translated into

data Channel = Chan (MVar (Channel,MVar ()))

7(vz.P) =do {chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}

7(T2.Q) =do {checkx + newMVar (); 7(z(y).P) = do {(y, checkx) + takeMVar (unchan z);
putMvar (unchan x) (z, checkx); takeMVar check;7(P)}
putMVar checkz ();7(Q)}
€T
sender receiver
T2.Q) z(y).P
checkx

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 11/19

Full Translation

TO(P) _Cout[()]

7(Stop) =takeMVar stop

7(0) =return ()

7(P1Q) =do {forkI0 7(Q);7(P)}

7(!P) =1letrec f =do {forkIO 7(P); f} in f

T(vx.P) =do{chanz < newEmptyMVar;letrec x = Chan chanz in 7(P)}
7(Z2.Q) =do{checkx < newMVar ();

putMVar (unchan x) (z, checkz);
{putMVar checkz ();7(Q)}

T(z(y).P) =do{(y, checkx) < takeMVar (unchan x);
takeMVar checkz;T(P)}

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 12/19

Correctness of Translation 7

Theorem (Convergence Equivalence)
For closed P € Ilgtop: Pl <= C,[7(P)| and Pl < C7,[7(P)| }

Proof consists of four parts:

STy*

o (“l=1") PXL PP successful = 3Q : C7,,[7(P)] 5 Q, Q successful.

ST ,%

<= — successtul — —) P’ successfu
"= ") CT T Q.,Q ful ap . p 2 prop ful

STy*x ST,*

o (b=l")P—= P P = 3Q: Ch,[r(P)] — Q, Q1

ST,*

o ("= 1) CLlr(P)] 15 Q1 = 3P : P I PP
All parts require to inductively construct reduction sequences from given ones.

For parts ("} < ") and ("} = U”) the given sequences C7,,[7(P)] 225 Q have to be
reordered, cut and/or extended to “back-translate” them.

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 13/19 Introduction Tlstop CH Translations Conclusion

Correctness of Translation 7 (Cont'd)

Theorem (Adequacy)
Translation 7 is adequate, i.e. for all P, P’ € llg¢op: 7(P) ~eqy T(P') = P~ P’

Theorem

The translation 7 is not fully abstract (P ~. P’ <= 7(P) ~cr, T(P)).
On closed processes P, P': P ~, P' <= 7(P) ~¢q, T(P')

where e1 ~ -, e iff for all C' : FV(Cle1]) U FV(Clez]) C {stop} :
CT

out

[Cleall} <= Cou[Clealld and C7,[Clea]]d <= CF[Clea]l¥

out

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 14/19

Translations with Global MVars

Ideas:
@ Translation of stop, 0, |, ! as before

@ m-calculus-channels are translated into data of type

data Channel =Chan (MVar Channel)/ MVar))...(MVar ())

content check?K/IVars
i.e. channel z becomes a binding x = Chan content check; ... check,
e MVars content, checky,. .., check, are created once and are (globally) visible via =

e Programs for sender Tz and receiver x(y) are restricted:
@ They exchange the message via the content-MVar

@ They perform takeMVar & putMVar on the check-MVars for synchronisation

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 15/19 Introduction Tlstop CH Translations Conclusion

Translations with Global MVars (Cont'd)

Reminder: a channel x becomes a binding x = Chan content check; ... check,

Questions:
@ Are there correct translations under these restrictions?
@ How many check-MVars are required?

@ What is the smallest correct translation?

Approach:
@ enumerate all translations and automatically search for counter-examples

@ check correctness of the remaining (potentially correct) translations by hand

Conjecture (Proved in the meantime, not yet published) J

With the described restrictions two check-MVars are required.

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 16/19 Introduction Tlstop CH Translations Conclusion

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMVar (content x) z; putMvar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z); T1(Q)}

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMVar (content x) z; putMvar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z); T1(Q)}

content x

checky x

checks x

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMVar (content x) z; putMvar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z); T1(Q)}

content x

checky x
sender receiver
72.Q checks x z(y).P

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMVar (content x) z; putMvar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z); T1(Q)}

content x
take
> /blocked/
checky x
sender receiver
72.Q checks x z(y).P

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMVar (content x) z; putMvar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z); T1(Q)}

content x
take
> /blocked/
checky x
put
sender —_—T receiver
72.Q checks x z(y).P

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMvVar (content z) z; putMvar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z); T1(Q)}

content x
LY 2K > fblockeds
checky x
sender . receiver
72.Q checks x z(y).P

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMVar (content x) z; putMvar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z); T1(Q)}

content x
take

checky x

sender receiver

72.Q checks x z(y).P
take

4 blocked 4 <}

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMVar (content x) z; putMvar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z); T1(Q)}

content x
take

checky x

sender receiver

72.Q checks x z(y).P
take

4 blocked 4 <}

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMVar (content x) z; putMvVar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z); T1(Q)}

content x
checky x
sender . receiver
72.Q checks x z(y).P
take put

4 blocked <} <

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMVar (content x) z; putMvar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z); T1(Q)}

content x

checky x
sender receiver
72.Q checks x z(y).P

| take .

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMVar (content x) z; putMvVar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z);T1(Q)}

content x
checky x
take)
sender receiver
72.Q checks x z(y).P

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T1(Z2.Q) = do {putMVar (check;) (), Ti(z(y).P) = do {y < takeMVar (content x);
putMVar (content x) z; putMvar (checks x); Th (P)}
takeMVar (checks x);

takeMVar (check; z); T1(Q)}

content x

checky x
sender receiver
72.Q checks x z(y).P

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Correct Translation with Two Check-MVars

T)(Zz.Q) = do {putMvVar (check; z) (), Ti(z(y).P) = do {y < takeMVar (content z);
putMvar (content z) z; putMvar (checks x); T1(P)}
takeMVar (checks x);

takeMVar (check; z); Ty (Q)}

Theorem
Ty is convergence-equivalent, adequate, and on closed processes also fully-abstract. J

Main arguments:
e MVar (check;) is used as a mutex for the receivers on x

@ execution of the sender/receiver protocol is non-overlapping

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 17/19

Translations with Global MVars and Interprocess Restriction

Interprocess restriction:
One put/take-pair for each check-MVar and it is distributed between sender/receiver.

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 18/19

Translations with Global MVars and Interprocess Restriction

Interprocess restriction:
One put/take-pair for each check-MVar and it is distributed between sender/receiver.

Theorem

Under the interprocess restriction, three check-MVars are necessary and sufficient. J

Correct translation:

T5(Z2.Q) = do {putMVar (content z) z; Ty (z(y).P) = do {takeMVar (check; x);
putMvVar (check; x) (); putMvVar (checks x);
takeMVar (checks x); takeMVar (checks x);
putMvar (checks x) (); T2(Q) } y < takeMVar (content z); To(P)}

Results of the automated search for counter-examples:
o for 1 check-MVar 8 of 8 translations are refuted
@ for 2 check-MVars 72 of 72 translations are refuted
o for 3 check-MVars 762 of 768 translations are refuted

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 18/19 Introduction Tlstop CH Translations Conclusion

Conclusion & Future Work

Conclusion
@ Correct translations from Ilg¢.p into Concurrent Haskell
@ Translation with private MVars
@ Smallest translations with global MVars
@ Translations are convergence equivalent and adequate
(fully abstract on closed processes)

@ Refuted incorrect translations by automated search for counter-examples

Future Work
@ Variations and extensions of Ils¢ep (recursion, sums, name matching, ...)
@ Other target languages?

@ Publish proof of conjecture

D.Sabel | Synchronous Message-Passing by MVars | EXPRESS/SOS 2020 19/19 Introduction Ilstop CH Translations Conclusion

	Introduction
	Stop
	CH
	Translations
	Conclusion

